QUINAZOLINONE BIPHENYL ACYLSULFONAMIDES: A POTENT NEW CLASS OF ANGIOTENSIN-II RECEPTOR ANTAGONISTS

Prasun K. Chakravarty*,† Robert A. Strelitz,† Tsing-Bau Chen,# Raymond S. L. Chang,# Victor J. Lotti# Gloria J. Zingaro,# Terry W. Schorn,# Salah D. Kivlighn,# Peter K. S. Siegl,# Arthur A. Patchett† and William J. Greenlee†

†Exploratory Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065 and #Department of Pharmacology, Merck Research Laboratories, West Point, Pennsylvania 19486

Abstract: A new series of quinazolinone-based AT₁ selective antagonists, bearing acylsulfonamides (-SO₂NHCOR) as the tetrazole bioisosteres, was evaluated. While AT₁ potencies remained similar to the tetrazole analogs, the AT₂ receptor affinities were significantly improved with the introduction of acylsulfonamide groups. Several of these antagonists displayed improved in vivo properties.

Introduction: The peptide hormone angiotensin II (AII), a potent endogenous vasoconstrictor, is the primary effector component of the renin-angiotensin system (RAS) that plays a major role in regulating the blood pressure and fluid-electrolyte balance in mammals in normal and pathophysiological conditions. The biological effects of AII are mediated by the specific membrane-bound receptors that are present in various target tissues, and two subtypes of these receptors, designated as AT₁ and AT₂, have recently been identified. The AT₁ receptor, the predominant AII receptor in vascular tissues and liver, is the primary mediator of many functional responses to AII (vasoconstriction, cardiac stimulation, salt-water retention by kidney, and stimulation of aldosterone biosynthesis and release), and a selective blockade of this receptor with antagonists offers an attractive approach to developing novel antihypertensive agents. Since the discovery of losartan (DuP 753, MK 954) (1)⁴, the leading non-peptide AT₁ selective antagonist, several highly potent AT₁ selective antagonists bearing novel heterocycles have been reported. The tetrazole group is a common acidic function present in many of these antagonists.

Bu N=N R₂ NO N=N R₂ NO O R

1 (Losartan)
$$\frac{2}{2a}$$
 (R₁ = i-Pr) $\frac{2}{3}$

Recently, quinazolinone biphenyl tetrazoles (2), a new series of AII antagonists, have also been reported from our laboratories. Despite their good *in vitro* potency, many of these antagonists displayed short *in vivo* duration of action in conscious normotensive rats and rhesus monkeys after intravenous administration, by which may be attributed to their rapid *in vivo* metabolism and/or clearance. Since the tetrazole function has been shown to be a major site for glucuronidation in losartan, we envisaged that minimizing this mode of metabolism, by incorporating an alternative acidic group, might improve the pharmacological properties of these biphenyl-based antagonists. Towards this goal, the acylsulfonamide (-SO2NHCOR) group was chosen as a bioisosteric replacement of the tetrazole. R,9 Recently, in our studies with imidazole 10 and imidazo[4,5-b]pyridine 11 AII antagonists, we have demonstrated that acylsulfonamides are excellent replacements for the tetrazole function, and do not undergo rapid glucuronidation. In our continued search for novel non-tetrazole AII antagonists, we exchanged the tetrazole group of quinazolinone antagonists (2) with acylsulfonamides. Herein we report the synthesis, the structure-activity relationships (SAR) and *in vivo* properties of quinazolinone biphenyl acylsulfonamides (3), a potent new series of AT1 selective antagonists.

Chemistry: A typical synthesis of quinazolinone biphenyl acylsulfonamides (3a-3i; Table I) is outlined in **Scheme 1**. Alkylation of the quinazolinones ($4)^{6,13}$ with the bromomethyl biphenylsulfonamide ($5)^{10b}$ in the presence of aq. NaOH under phase-transfer condition gave, after chromatography, the desired N³-alkylated product (6). Removal of the t-butyl group with neat trifluoroacetic acid (TFA)

Scheme 1 Reagents: (a) 2.5 N NaOH, Triton B, toluene, 85°C, 12 h; (b) anhydrous TFA, reflux, 3 h; (c) 1. R₃COOH, Carbonyldimidazole, THF, reflux; ii.DBU, 60°C, 24 h; (d) RNCO, DBU, THF, reflux

treatment afforded the unprotected sulfonamide (7). Reaction of 7 with a mixture of an acylimidazole (prepared from a carboxylic acid R₃COOH and 1,1'-carbonyldiimidazole) and 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) provided the desired acylsulfonamides ¹⁴. The sulfonylurea derivatives (8a and 8b) were prepared by the reaction of sulfonamide 7 with an isocyanate in the presence of DBU. The compounds described in Table II were prepared using the chemistry reported previously.⁶

Results and discussion: The *in vitro* AII receptor binding affinities of the compounds in Tables I and II are expressed as IC50 values, and were determined by their ability to displace the specific binding of radio-ligand ¹²⁵I-[Sar¹, Ile⁸]AII from the rabbit aorta membrane receptor (AT₁ receptors) and rat midbrain receptor (AT₂ receptors) preparations as previously described. ¹⁵ The tetrazole analogue 2a is present in Table I for comparison purposes.

Table I

Compd. #	R ₂	R ₃	AT ₁ IC ₅₀ (nM)	AT ₂ IC ₅₀ (nM)
3a	Bu	Ph	3.0	80
3b	Bu	(4-F)Ph	4.0	2100
3c	Bu	2-thienyl ^{20a}	8.0	300
3d	Bu	c-Pr	2.6	390
3е	Bu	c-pentylethyl	1.5	100
3f	Bu	(1-Me)Cyclo-Pr ^{20b}	1.1	549
3g	Bu	-(CH ₂) ₅ NH-Boc	12	620
3h	Bu	-(CH2)5NH2	4.4	560
3i	Pr	Cyclo-Pr	2.8	660
3j	Pr	-(CH ₂) ₄ COOH	25	9500
8a	Bu	NH-i-Pr	5.6	2100
8b	Bu	NH-Ph	5.9	340
2a	Bu	Tetrazole	5.0	29,000
	3b 3c 3d 3e 3f 3g 3h 3i 3j 8a 8b	3a Bu 3b Bu 3c Bu 3c Bu 3d Bu 3e Bu 3f Bu 3h Bu 3i Pr 8a Bu 8b Bu	3a Bu Ph 3b Bu (4-F)Ph 3c Bu 2-thienyl ^{20a} c-Pr 3e Bu c-pentylethyl 3f Bu (1-Me)Cyclo-Pr ^{20b} 3g Bu -(CH ₂) ₅ NH-Boc 3h Bu -(CH ₂) ₅ NH ₂ 3i Pr Cyclo-Pr 3j Pr -(CH ₂) ₄ COOH 8a Bu NH-i-Pr 8b Bu NH-Ph	Compd. # R ₂ R ₃ (nM) 3a Bu Ph 3.0 3b Bu (4-F)Ph 4.0 3c Bu 2-thienyl ^{20a} 8.0 3d Bu c-Pr 2.6 3e Bu c-pentylethyl 1.5 3f Bu (1-Me)Cyclo-Pr ^{20b} 1.1 0R ₃ 3g Bu -(CH ₂) ₅ NH-Boc 12 0R ₃ 3h Bu -(CH ₂) ₅ NH ₂ 4.4 3i Pr Cyclo-Pr 2.8 3j Pr -(CH ₂) ₄ COOH 25 8a Bu NH-i-Pr 5.6 8b Bu NH-Ph 5.9

Table II

The binding data shown in **Table I** indicates that acylsulfonamides are potent AII antagonists with similar AT₁ receptor binding affinities to that of their tetrazole counterparts. A variety of acyl groups bearing aryl and alkyl substituents can be accommodated with minimal effect on AT₁ potency. However, the AT₂ receptor binding affinities are significantly improved with the incorporation of lipophilic acyl groups. Acyl groups with polar substituents (e.g. **3g. 3h** and **3i**) are not well tolerated by either AT₁ or AT₂ receptors. As shown, the acylsulfonamide group can also be replaced with sulfonylureas (e.g. **8a** and **8b**) with minimal loss in AT₁ receptor binding affinities.

Effects of modification at the 6-position of quinazolinone ring were then examined (**Table 11**). Replacing the 6-isopropyl substituent in <u>3d</u> with NMe₂ and N(Me)COOiBu groups¹⁶ resulted in analogs <u>3k</u> and <u>3n</u>, respectively, with reduced AT₁ receptor affinity. However, AT₂ potency was enhanced in <u>3n</u>. Further structural modifications of <u>3n</u> resulted in a potent antagonist <u>30</u> with sub-nanomolar AT₁ receptor binding affinity (IC₅₀=0.5 nM).

In vivo results: Several of the acylsulfonamides were evaluated in normotensive rats. ¹⁷ The pressor responses to exogenously administered AII (0.1 μ g/kg i.v. bolus) were measured before and after administration (i.v or oral) of the test antagonist. A preliminary screening led to the selection of 3d

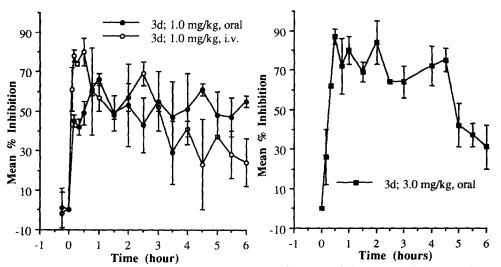


Fig.1: Inhibiton of AII induced increase in mean arterial blood pressure after administration of 3d to conscious rats (N=2)

Fig. 2: Inhibition of AII induced increase in mean arterial blood pressure after oral administration of 3d (L-161,021) to conscious dogs (N=2)

(L-161,021) as a promising non-tetrazole AT1 selective quinazolinone-based antagonist for further examination. This antagonist displayed excellent in vivo activity (peak effects and duration) in conscious rats after i.v. (ED50=0.25 mg/kg) and oral administration (ED50=0.68 mg/kg) administrations (Fig. 1). 18 Upon oral administration (3.0 mg/kg) to normotensive conscious dogs¹⁹, 3d also displayed effective blockade of AII induced pressor response with an extended duration of action (> 5 hours) (Fig. 2).

In conclusion, we have demonstrated that the acylsulfonamide group is an effective replacement for the tetrazole in quinazolinone-based AII antagonists. In general, incorporation of this group has resulted in improvements in in vitro potencies, particularly AT2 receptor binding affinities. The acylsulfonamide L-161,021 (3d), a member of this new class of AT₁ selective antagonists, is potent and orally effective in blocking AII induced pressor response in both normotensive conscious rats and dogs with good duration (> 5 hours).

,Acknowledgement: We thank Dr. L. F. Colwell, Jr. and Ms. A. Bernick for mass spectral determinations, and Mr. M. S. Levorse, Dr. G. R. Kieczykowski and Dr. P. Eskola for large-scale preparation of the alkylating agent 5.

References and notes:

- Dzau, V. J.; Pratt, R. E. The Heart and Cardiovascular System; Fozzard, H. A.; Haber, E.;
- Jennings, R. B.; Katz, A. M.; Morgan, H. E., Eds.; Raven Press; New York, 1986; pp 163-1662.

 (a) Chang, R. S. L.; Lotti, V. J. *Pharmacologists*. 1989, 31, 150. (b) Chang, R. S. L.; Lotti, V. J. 2.
- (a) Chang, R. S. L.; Lotti, V. J. Pharmacologists. 1989, 31, 150. (b) Chang, R. S. L.; Lotti, V. J. Mol. Pharmacol. 1990, 37, 347-351. (c) Whitebread, S.; Mele, M.; Kamber, B.; Degasparo; M. Biochem. Biophys. Res. Commun. 1989, 163, 284-291. (d) Timmermans, P. B. M. W. M.; Chiu, A. T.; Herblin, W. F.; Wong, P. C.; Smith, R. D. J. Hypertension, 1992, 5, 406-410. (a) Johnson, A. L.; Carini, D. J.; Chiu, A. T.; Duncia, J. V.; Price, W. A., Jr.; Wells, G. J.; Wexler, R. R.; Wong, P. C.; Timmermans, P. B. M. W. M. Drugs News Perspect. 1990, 3, 337-351. (b) Streeten, D. H. P.; Anderson, G. H., Jr. Clinical Pharmacology of Antihypertensive Drugs (Handbook of Hypertension, Vol 5), Doyel, A. I., Ed.; Elsevier: Amsterdam; 1984, pp 264-271. 3. 264-271
- 4. Wong, P. C.; Barnes, B.; Chiu, A. T.; Christ, D. D.; Duncia, J. V.; Herblin, W. F.; Timmermans, P. B. M. W. M. Cardiovascular Drug Reviews, 1991, 9, 317.
- Greenlee, W. J.; Siegl, P. K. S. Annual Reports Medicinal Chemistry, Vol 27, Bristol, J. A., Ed.; 5. Academic Press: Amsterdam; 1992, pp. 59-68.
- (a) Allen, E. E.; de Laszlo, S. E.; Huang, S. X.; Quagliato, C. S.; Greenlee, W. J.; Chang, R. S. L.; Chen; T. B.; Faust, K. A.; Lotti, V. J. BioMed. Chem. Lett., 1993, 3, 1293-1298. (b) de Laszlo, S. E.; Allen, E. E.; Quagliato, C. S.; Greenlee, W. J.; Patchett, A. A.; Nachbar, R. B.; Siegl, P. K. S.; Chang, R. S. L.; Kivlighn, S. D.; Schom, T. W.; Faust, K. A.; Chen; T. B.; Zingaro, G. J.; Lotti, 6. V. J. BioMed. Chem. Lett., 1993, 3, 1299-1304.
- Stearns, R. A.; Miller, R. R.; Doss, G. A.; Chakravarty, P. K.; Rosegay, A.; Gatto, G. J.; Chiu, S. L. Drug Metabolism 7. and Disposition, 1992, 20, 281-287.
- As shown, the acylsulfonamide group can be viewed as an isostere of tetrazole. The application of acylsulfonamides as 8. carboxylic acid equivalents is well documented in the design of a number of therapeutic targets. 9 The pka value of sulphabenzamide (4.6), the antibacterial agent, is similar to that of 5-aryl-tetrazoles (5-6).

$$\{ \begin{array}{c} N & N \\ N \end{array} \Rightarrow \{ \begin{array}{c} N & O \\ N \end{array} \}_{R}$$

9. (a) Mandell, G. L.; Sande, M. A. Antimicrobial Agents, In The pharmacological Basis of Therapeutics, 7th ed.; Gilman, A. G., Goodman, L. S., Rall, T. W., Murad, F., Eds.; Macmillan

- Publishing Co.: New York, 1985; pp 1095-1114. (b) Taylor, I. K.; O'Shaughnessy, K. M.; Fuller, R. W.; Dollery, C. T. *Lancet*, 1991, 337, 690-694. (c) Yee, Y. K.; Bernstein, P. R.; Adams, E. J.; Brown, F. J.; Cronk, L. A.; Hebbel, K. C.; Vacek, E. P.; Krell, R. D.; Snyder, D. W. *J. Med.* Chem., 1990, 33, 2437-2451.
- 10. (a) Naylor, E. M.; Chakravarty, P. K.; Costello, C. A.; Chang, R. S. L.; Chen, T. -B.; Faust, K. A.; Lotti, V. J.; Kivlighn, S. D.; Zingaro, G. J.; Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J. Abstracts of Papers, 205th Am. Chem. Soc. Natl. Mtg., March. 18-April 2, 1993. MEDI 114. (b) Naylor, E. M.; Chakravarty, P. K.; Costello, C. A.; Chang, R. S. L.; Chen, T. -B.; Faust, K. A.; Lotti, V. J.; Kivlighn, S. D.; Zingaro, G. J.; Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J. BioMed. Chem. Lett., in this issue.
- Naylor, E. M.; Chakravarty, P. K.; Chen, A.; Strelitz, R. A.; Chang, R. S. L.; Chen, T. -B.; Faust, K. A.; Lotti, V. J.; Kivlighn, S. D.; Zingaro, G. J.; Schorn, T. W.; Siegl, P. K. S.; Patchett, A. A.; 11. Greenlee, W. J. Abstracts of Papers, 206th Am. Chem. Soc. Natl. Mtg., Aug. 22-27, 1993.MEDI
- In vitro metabolism studies with imidazo[4,5-b]pyridine biphenyl acylsulfonamides using liver 12. slices from various species have demonstrated that these antagonists do not undergo extensive
- glucuronidation like the analogous tetrazolyl antagonists. Stearns, R. A. et al. unpublished results. Tilley, J. W.; LeMahieu, R. A.; Carson, M.; Kierstead, R. W.; Baruth, H. W.; Yaremko, B. J. 13. Med. Chem., 1980, 23, 92-95.
- 14.
- Drummond, J. T.; Johnson, G. Tetrahedron Lett., 1988, 29, 1653-1656.

 (a) Chang, R. S. L.; Siegl, P. K. S.; Clineschmidt, B. V.; Mantlo, N. B.; Chakravarty, P. K.; Greenlee, W. J.; Patchett, A. A. J. Pharmacol. Exp. Ther., 1992, 262, 133-138. (b) Chang, R. S. L.; Lotti, V. J.; Chen, T. B.; Faust, K. A. Biochem. Biophys. Res. Commun., 1990, 171, 813-817. 15. (c) The standard error (expressed as percent of mean values) of IC50 values is estimated to be less than 30%. In some cases, the reported IC50s represent an avarage of two or more determinations.
- 16 The rationale for using N,N-dimethylamino and N(Me)COO-i-Bu groups as 6-position substituents has been discussed earlier (see ref. 6b).
- 17. Siegl, P. K. S.; Chang, R. S. L.; Mantlo, N. B.; Chakravarty, P. K.; Ondeyka, D. L.; Greenlee, W. J.; Patchett, A. A. J. Pharmacol. Exp. Ther., 1992, 262, 139-144.
- (a) At the same dose (1.0 mg/kg) level, the tetrazole analogue 2a showed a shorter duration of action (0.3 hour) in conscious rats after i.v. administration (see ref. 6b). (b) In conscious rats, the 18. ED50 values obtained for losartan were (0.28 mg/kg, i.v.) and (0.67 mg/kg, oral).
- Female mongrel dogs were used. The protocol used was similar to the one described in ref. 17.

 (a) Hutchins, S. M.; Ashton, W. T.; Chang, L. L.; Flanagan, K. L.; Chakravarty, P. K.; Greenlee, W. J.; Chang, R. S. L.; Lotti, V. J.; Kivlighn, S. D.; Siegl, P. K. S. Abstracts of Papers, 206th Am. Chem. Soc. Natl. Mtg., Aug. 22-27, 1993.MEDI 81. (b) Flanagan, K. L. Chang, L. L.; Ashton, W. T.; Chakravarty, P. K.; Greenlee, W. J.; Chang, R. S. L.; Lotti, V. J.; Kivlighn, S. D.; Siegl, P. K. S. Abstracts of Papers, 206th Am. Chem. Soc. Natl. Mtg., Aug. 22-27, 1993.MEDI 80. 20.